
CT4Rec: Simple yet Effective Consistency Training for Sequential
Recommendation

Chong Liu∗
Tencent Inc.

China
nickcliu@tencent.com

Xiaoyang Liu∗
OPPO Inc.
China

liuxiaoyang@oppo.com

Rongqin Zheng
Tencent Inc.

China
leonezheng@tencent.com

Lixin Zhang
Tencent Inc.

China
lixinzhang@tencent.com

Xiaobo Liang
Soochow University

China
xbliang3@stu.suda.cn

Juntao Li†
Soochow University

China
ljt@suda.edu.cn

Lijun Wu
Microsoft Research Asia

China
lijunwu@microsoft.com

Min Zhang
Soochow University

China
minzhang@suda.edu.cn

Leyu Lin
Tencent Inc.

China
goshawklin@tencent.com

ABSTRACT
Sequential recommendation methods are increasingly important in
cutting-edge recommender systems. Through leveraging historical
records, the systems can capture user interests and perform recom-
mendations accordingly. State-of-the-art sequential recommenda-
tion models proposed very recently combine contrastive learning
techniques for obtaining high-quality user representations. Though
effective and performing well, the models based on contrastive
learning require careful selection of data augmentationmethods and
pretext tasks, efficient negative sampling strategies, and massive
hyper-parameters validation. In this paper, we propose an ultra-
simple alternative for obtaining better user representations and
improving sequential recommendation performance. Specifically,
we present a simple yet effective Consistency Training method
for sequential Recommendation (CT4Rec) in which only two extra
training objectives are utilized without any structural modifica-
tions and data augmentation. Experiments on three benchmark
datasets and one large newly crawled industrial corpus demon-
strate that our proposed method outperforms SOTA models by a
large margin and with much less training time than these based
on contrastive learning. Online evaluation on real-world content
recommendation system also achieves 2.717% improvement on the
click-through rate and 3.679% increase on the average click number
per capita. Further exploration reveals that such a simple method

∗Both authors contributed equally to this paper.
†Juntao Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599798

has great potential for CTR prediction. Our code is available at
https://github.com/ct4rec/CT4Rec.git.

CCS CONCEPTS
• Information systems→ Information retrieval.

KEYWORDS
Recommender Systems, Sequential Recommendation, Consistency
Training
ACM Reference Format:
Chong Liu, Xiaoyang Liu, Rongqin Zheng, Lixin Zhang, Xiaobo Liang,
Juntao Li, Lijun Wu, Min Zhang, and Leyu Lin. 2023. CT4Rec: Simple yet
Effective Consistency Training for Sequential Recommendation. In Proceed-
ings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3580305.3599798

1 INTRODUCTION
Recommendation systems have been extensively applied in on-
line platforms nowadays, e.g., Amazon [30], Google [1, 5, 22] and
Facebook [19]. Due to the dynamic interactions between users and
items, it is essential to capture evolving user interests from users’
historical records. To accurately represent user interests and make
an appropriate recommendation, many efforts have been paid to
study sequential recommendation methods [15, 24, 45, 50].

Generally, the sequential recommendation task aims to char-
acterize user representation from users’ historical behaviors and
predict the expected item accordingly. In viewing the great success
of deep learning for sequential dependency modeling and repre-
sentation learning, many methods based on deep neural networks
[14] have been introduced and proposed to solve this task, cover-
ing RNN-Based frameworks [15, 32, 44], different CNNs blocks and
structures [45, 46], Graph Neural Networks (GNNs) [37, 50, 51], and
also model variants [24, 27, 43] relied on the powerful multi-head
self-attention [47]. Though performing well, these methods might
suffer from the data sparsity problem [24, 42, 63] for sequential
recommendation, especially for models built on the multi-head

ar
X

iv
:2

11
2.

06
66

8v
3

 [
cs

.I
R

]
 9

 A
ug

 2
02

3

https://doi.org/10.1145/3580305.3599798
https://github.com/ct4rec/CT4Rec.git
https://doi.org/10.1145/3580305.3599798

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chong Liu et al.

self-attention mechanism, where only one single item prediction
loss is used to optimize the full model parameters for capturing all
possible correlations in input interaction sequences.

To address the above challenge, various self-supervised learn-
ing strategies are introduced [55, 62]. Among these, the recently
introduced contrastive learning (CL) objective [53] achieves very
promising results. Through combing with effective data augmenta-
tion strategies and cooperating with the vanilla sequential predic-
tion objective, the CL-based method can learn better sequence-level
user representations and enhance the performance of sequential rec-
ommendations. However, the effectiveness of CL-based approaches
is subject to the correlated data augmentation methods, pretext
tasks, efficient negative sampling, and hyper-parameters selection
(e.g., the temperature in NCE and InfoNCE losses) [20]. To mitigate
the above drawbacks, many efforts have been made to simplify con-
trastive learning. [8] propose a very simple yet effective contrastive
learning scheme that utilizes dropout noise as data augmentation
to construct high-quality positive samples for sequence-level rep-
resentation learning. Although such a scheme is effective for un-
supervised representation learning, adapting it into the sequential
recommendation task will still encounter the dilemma in which a
higher proportion of CL objective in model training will lead to bet-
ter representations that can easily distinguish positive and negative
samples but might result in worse item prediction performance and
vice versa. In other words, there is a noticeable gap between the
discrimination of positive and negative samples and the task objec-
tive for the sequential recommendation. Thus, the key to obtaining
better user representations mainly for the item prediction task is
designing more training strategies that can address the inherent
issues of sequential recommendation models.

Inspired by the recent observation on the multi-head attention
model that a very simple regularization strategy imposed on the
output space of supervised tasks yields striking performance im-
provement [29] (achieving SOTA on many challenging tasks), we
propose to thoroughly explore the effect of consistency training for
the sequential recommendation task. We first introduce the simple
bidirectional KL divergence regularization into the output space to
constrain the inconsistency between two forward passes with differ-
ent dropouts. Unlike previous machine translation, summarization,
and natural language understanding tasks, we argue that the in-
troduced consistency regularization merely in the output space is
not enough for the data sparsity setting of sequential recommenda-
tion. We then design a novel and simple regularization objective
in the representation space. Unlike previous studies that utilize
cosine [8] and L2 [35, 64] distance to regularize the representation
space, we propose to regularize the distributed probability of each
user representation over others. Thus, we can extend and leverage
the effective bidirectional KL loss to regularize the representation
inconsistency. Experiments on three public benchmarks and one
newly collected large-scale corpus indicate that our proposed sim-
ple consistency training for sequential recommendation (CT4Rec)
outperforms state-of-the-art methods based on contrastive learning
by a large margin. Extensive experiments further prove that our
proposed consistency training can be easily extended to the data
side. The Online A/B test also confirms the effectiveness of our
method. Besides, we extend our consistency training method to the

CTR prediction task, and experiments conducted on two newly con-
structed industrial datasets further prove the effectiveness of our
method. In a nutshell, we mainly have the following contributions:

• We propose a simple (with only two bidirectional KL losses)
yet very effective consistency training method for sequential
recommendation systems. To the best of our knowledge, this
is the first work to thoroughly study the effect of consis-
tency training from different perspectives and with a unified
training objective for the sequential recommendation task.
• Our proposed consistency training method can be easily
extended to other inconsistency scenarios and tasks, e.g.,
data augmentation and CTR prediction.
• Extensive experiments on four offline datasets show the
effectiveness of our proposed CT4Rec over SOTA models
based on contrastive learning with much better performance
and faster convergence time. The Online A/B test also shows
significant improvement over the strong ensemble model.

2 RELATEDWORK
Early sequential recommendation (SR) methods are usually based
on Markov Chain (MC), including adopting first-order MC [40] and
high-order MCs [12, 13]. As for current deep learning approaches,
they can be generally divided into four categories, i.e., RNN-based
[15, 16, 21, 26, 31, 32, 38, 44], CNN-based [45, 46, 52], attention-
based [24, 27, 43, 56, 57, 60] and GNN-based [25, 37, 48, 50, 51, 61]
methods. Concretely, GRU4Rec [15] applies RNN to SR and many
variants have been proposed based on GRU4Rec by adding data
augmentation GRU4Rec+ [44], hierarchical RNN [38] and attention
module [2, 26, 34]. However, RNN-based methods usually exhibit
worse performance than CNN-based and attention-based meth-
ods for the data sparsity setting. Caser [45] proposes a convolu-
tional sequence embedding recommendation model, and [46] use
3-dimensional CNNs to achieve character-level encoding of input
data. Meanwhile, attention mechanisms [47] is used to model user
behavior sequences and have achieved outstanding performance
[7, 23, 24, 27, 33, 43]. Besides, many researches [37, 50, 51] combine
attention mechanisms and GNNs to solve the SR task. Memory
networks [3, 18], data augmentation [9, 54] and session-based [17]
models are also utilized to improve the performance of SR.

Recently, the combination of contrastive learning and attention
mechanisms [53, 62] is widely used in SR and achieves great success.
CauseRec [59] performs contrastive learning by contrasting the
counterfactual with the observational. StackRec [49] utilizes stack-
ing and fine-tuning to develop a deep but easy-to-train SR model.
ICAI-SR [58] focuses on the complex relations between items and
categorical attributes in SR. Unlike previous researches, we only
introduce two consistency training objectives in the representation
and output spaces without any structure modifications, extra data,
and heuristic patterns from tasks. Though extremely simple, our
method outperforms recent SOTA models by a large margin and is
more efficient for model training.

There are only a few related researches in the fields of natural
language process [8] and machine learning [29, 35, 64]. Specifically,
[8] introduce dropout as the alternative of data augmentation into
contrasting learning for sequence representation learning while
we focus on the inconsistency introduced by dropout in the data

CT4Rec: Simple yet Effective Consistency Training for Sequential Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 1: Model structure of CT4Rec. It takes user click sequences as input and outputs user representations for item retrieval
in the matching stage of recommendation. The input sequences are transformed into vector representations via the embedding
layer and then encoded by N transformers with different hidden dropout masks. In addition, Distributed Regularization Loss
and Regularized Dropout Loss are introduced to restrain these representations generated by different dropout masks.

sparsity SR task. Our proposed method is also extremely simple
compared with the paradigm of combining contrastive learning
with the traditional item prediction objective. [35, 64] mainly focus
on the gap between training and testing and utilize L2 for regular-
izing the representation space, which is less effective in the data
sparsity setting, represented by the marginal to none performance
improvements in Section 5. Different from introducing a regulariza-
tion objective in the output space to constrain the randomness of
sub-models brought by dropout [29], we focus on the consistency
training of the data sparsity SR task from both the representation
and output space. We also propose a simple yet effective regulariza-
tion strategy in the representation space to compensate and align
the output space consistency loss.

3 THE CT4REC MODEL
The overall structure of our model is illustrated in Figure 1. Before
elaborating our proposed CT4Rec, we first present some necessary
notations to describe the sequential item prediction task. LetU =

(𝑢1, 𝑢2, ..., 𝑢 |U |) denote a set of users, and V = (𝑣1, 𝑣2, ..., 𝑣 |V |)
denote a set of items. The sequence for user𝑢 ∈ U is denoted as 𝑠𝑢 =

(𝑣 (𝑢)1 , 𝑣
(𝑢)
2 , ..., 𝑣

(𝑢)
𝑡 , ..., 𝑣

(𝑢)
|𝑠𝑢 |), where 𝑣

(𝑢)
𝑡 ∈ V is the item that user

𝑢 interacts at time step 𝑡 and |𝑠𝑢 | is the length of sequence 𝑠𝑢 . Given
the historical sequence 𝑠𝑢 , the task of sequential recommendation is
to predict the probability of all alternative items to be interacted by
user 𝑢 at time step |𝑠𝑢 | + 1, which is formulated as 𝑃 (𝑣 (𝑢)|𝑠𝑢 |+1 = 𝑣 |𝑠𝑢).

3.1 Backbone Model
Since our proposed consistency training method does not involve
structural modification and extra data utilization, we apply it to

the widely used SASRec model [24]. Following the original setting
in SASRec, the transformer encoder contains three parts, i.e., an
embedding layer, the stacked multi-head self-attention blocks, and
a prediction layer. Then, we can obtain user representation 𝒔𝒖 =

𝑓 (𝑠𝑢), where 𝑓 (·) indicates the transformer encoder.
To learn the relation between users and items in sequential rec-

ommendation, a similarity function, e.g., inner product, is applied
to measure distances between user representation and item repre-
sentation. Thus, for user representation 𝒔𝒖,𝒕 of user 𝑢 at time step
𝑡 , we can get a similarity distribution P(𝒔𝒖,𝒕) = P(𝑣 (𝑢)𝑡+1 |𝒔𝒖,𝒕) to
predict the item that user 𝑢 will interact at time step 𝑡 + 1. Then, the
basic loss function with positive item 𝒗+𝒕+1 and randomly sampled
negative items 𝒗−𝒕+1 ∈ V is denoted as:

P(𝒔𝒖,𝒕 ;𝜔) =
𝑒𝑥𝑝 (𝒔𝒖,𝒕𝒗+𝒕+1)

𝑒𝑥𝑝 (𝒔𝒖,𝒕𝒗+𝒕+1) +
∑

𝒗−𝒕+1∈V
𝑒𝑥𝑝 (𝒔𝒖,𝒕𝒗−𝒕+1) (1)

L𝑏𝑎𝑠𝑖𝑐 (𝒔𝒖,𝒕 ;𝜔) = −𝑙𝑜𝑔P(𝒔𝒖,𝒕 ;𝜔) (2)

, where 𝜔 refers to all trainable parameters of the model.

3.2 Consistency Training
Since the over-fitting problem extensively exists in deep neural
network models, regularization methods, including dropout, are
widely used to alleviate this problem. Commonly, dropout can
reduce over-fitting and co-adapting by randomly removing a certain
rate of units in the whole deep neural network. Also, dropout can
be treated as a method to generate and combine exponentially sub-
models, which always effectively enhances model performance.
Considering the above advantages and the randomness of dropout,
we propose our CT4Rec based on dropout to regularize both the

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chong Liu et al.

Figure 2: Illustration of (a) RD loss and (b) DR loss.

output space and the representation space of models. Inspired by
recent studies on dropout [29], we enhance the user representation
from the perspective of reducing the model inconsistency and gap
between training and testing.

Concretely, we forward twice with different dropouts and learn
the consistency between these two representations for each user,
i.e., each user interaction sequence su passing the forward network
twice and obtain two representations 𝒔𝒅1

𝒖,𝒕 and 𝒔𝒅2
𝒖,𝒕 . Since dropout

randomly removes units in a model, the two representations are
actually generated from two sub-models of the same model.

Regularized Dropout Loss (RD).We first apply a regularized
dropout loss to constrain the output space of sub-models from
dropout. Considering two representations 𝒔𝒅1

𝒖,𝒕 and 𝒔𝒅2
𝒖,𝒕 for user 𝑢,

as mentioned in Function 1, we can get two similarity distributions
P(𝒔𝒅1

𝒖,𝒕 ;𝜔) and P(𝒔
𝒅2
𝒖,𝒕 ;𝜔). Then, we introduce a bidirectional KL-

divergence loss to regularize the above two distributions:

L𝑅𝐷 (𝒔𝒖,𝒕 ;𝜔) =
1
2
(D𝐾𝐿 (P(𝒔𝒅1

𝒖,𝒕 ;𝜔) | |P(𝒔
𝒅2
𝒖,𝒕 ;𝜔))

+D𝐾𝐿 (P(𝒔𝒅2
𝒖,𝒕 ;𝜔) | |P(𝒔

𝒅1
𝒖,𝒕 ;𝜔)))

(3)

As shown in Figure 2(a), the dropped units of the left model
to generate user presentation 𝒔𝒅1

𝒖,𝒕 are different from that of the
right model to generate 𝒔𝒅2

𝒖,𝒕 . Therefore, the similarity distributions
P(𝒔𝒅1

𝒖,𝒕 ;𝜔) and P(𝒔
𝒅2
𝒖,𝒕 ;𝜔) are also varied for the same input se-

quence su.
Distributed Regularization Loss (DR). To better regularize

the representation space, we propose a distributed regularization
method in which each user is represented by its correlations with
other users rather than directly utilizing user representations for
consistency regularization. In this paper, we compare users in each
mini-batch, e.g., 𝑛 users (𝑢1, 𝑢2, ..., 𝑢𝑛) and two representations for
each user generated by dropout denoted as (𝒔𝒅1

𝒖1 , 𝒔
𝒅1
𝒖2 , ..., 𝒔

𝒅1
𝒖𝒏
) and

(𝒔𝒅2
𝒖1 , 𝒔

𝒅2
𝒖2 , . . . , 𝒔

𝒅2
𝒖𝒏
). As shown in Figure 2(b), for user𝑢1, we calculate

the similarities between 𝒔
𝒅𝒋
𝒖1 and all the other user representation

𝒔
𝒅𝒋
𝒖𝒊
, defined as 𝑠𝑖𝑚(𝒔𝒅𝒋

𝒖1 , 𝒔
𝒅𝒋
𝒖𝒊
), and obtain the similarity distribution

P𝑢 (𝒔
𝒅𝒋
𝒖1 ;𝜔) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑠𝑖𝑚(𝒔𝒅𝒋

𝒖1 , 𝒔
𝒅𝒋
𝒖2), ..., 𝑠𝑖𝑚(𝒔

𝒅𝒋
𝒖1 , 𝒔

𝒅𝒋
𝒖𝒏
)) (4)

Then, a bidirectional KL-divergence loss is applied to regularize
the two distributions P𝑢 (𝒔𝒅1

𝒖1 ;𝜔) and P𝑢 (𝒔
𝒅2
𝒖1 ;𝜔), defined as:

L𝐷𝑅 (𝒔𝒖 ;𝜔) =
1
2
(D𝐾𝐿 (P𝑢 (𝒔𝒅1

𝒖 ;𝜔) | |P𝑢 (𝒔𝒅2
𝒖 ;𝜔))

+D𝐾𝐿 (P𝑢 (𝒔𝒅2
𝒖 ;𝜔) | |P𝑢 (𝒔𝒅1

𝒖 ;𝜔)))
(5)

Final Objective. As shown in Figure 1, we train the above
two objectives together with the task-specific loss in the backbone
model. The task-specific loss and final training objective are as:

L𝑏𝑎𝑠𝑖𝑐 (𝒔𝒖,𝒕 ;𝜔) = −
1
2
(𝑙𝑜𝑔P(𝒔𝒅1

𝒖,𝒕 ;𝜔) + 𝑙𝑜𝑔P(𝒔
𝒅2
𝒖,𝒕 ;𝜔)) (6)

L𝑓 𝑖𝑛𝑎𝑙 = L𝑏𝑎𝑠𝑖𝑐 + 𝛼L𝑅𝐷 + 𝛽L𝐷𝑅 (7)
where 𝛼 and 𝛽 are the coefficient weights to control L𝑅𝐷 and L𝐷𝑅 .
Thus, our CT4Rec can control the influence of dropout and constrain
the model space. Compared with Equation 2, our CT4Rec only adds
two losses L𝑅𝐷 and L𝐷𝑅 with model structures unchanged, which
can also be widely applied on various model structures. We present
the training algorithm in the Appendix A.2.

4 EXPERIMENTS
4.1 Datasets
We conduct extensive experiments on three public benchmark
datasets that are widely used in recent literature [53] and a new
large-scale dataset collected from a real-world recommendation
scenario, i.e., PC-WeChat Top Stories. These datasets are very dif-
ferent in domains, platforms, and data scale, where their detailed
statistics are presented in Table 1.
• Amazon: a series of datasets comprise product reviews,
which are crawled from one of the largest E-Commerce plat-
forms, i.e., Amazon.com. As introduced in SASREC [24, 36],
these datasets are separated by top-level product categories.

CT4Rec: Simple yet Effective Consistency Training for Sequential Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 1: Dataset statistics of three public benchmarks and an
offline corpus from real-world application, where avg. refers
to the average actions per user.

Dataset #users #items #actions avg. density
Beauty 52,024 57,289 0.4M 7.6 0.01%
Sports 25,598 18,357 0.3M 8.3 0.05%
Yelp 30,431 20,033 0.3M 10.4 0.05%

WeChat 749,452 211,004 9.5M 12.7 0.006%

We follow one of the most recent researches [53] to utilize
the Beauty and Sports categories for comparison.
• Yelp: it is a widely acknowledged dataset for the business
recommendation, which is collected from the Yelp platform1.
Following [63], we leverage the data after January 1st, 2019,
and treat business categories as attributes.
• WeChat: this dataset is constructed from WeChat platform
for PC Top Stories recommendation (denoted as WeChat to
distinguish datasets from other platforms), which consists
of interaction records from 7th to 13rd, June 2021. Each
interaction provides positive feedback (i.e., click) of an item
from a user. Concretely, we collect 9.5 million interactions
from 0.74 million users on 0.21 million items and regard data
from the first few days as the train set and the rest for testing.

4.2 Baselines
To verify the effectiveness of our proposed method, we introduce
four representative baselines and three very recent methods.
• GRU4Rec [15]. It utilizes GRU modules to model user ac-
tion sequences for the session-based recommendation. We
consider each user’s click sequence as a session.
• SASRec [24]. It applies the multi-head self-attention mecha-
nism to solve the sequential recommendation task, which is
commonly treated as one of the state-of-the-art baselines. In
this paper, we utilize SASRec as the backbone of our CT4Rec.
• TiSASRec [27]. Based on SASRec, it further introduces time
interval aware self-attention mechanism to encode the user’s
interaction sequence, where the positions and time interval
between any two items are considered.
• BERT4Rec [43]. It uses the deep bidirectional self-attention
mechanism to model user interaction history in the sequen-
tial recommendation and trains the model like BERT [6].
• CL4SRec [53]. It generates different views of the same user
interaction sequence by using data augmentation methods
and adds contrastive learning objective to the original objec-
tive of SASRec for sequential recommendation tasks.
• CLRec. [62] design a queue-based contrastive learningmethod
named CLRec to de-bias deep candidate generation in the
recommendation system and further propose Multi-CLRec
for multi-intention aware bias reduction. In this work, we
only compare the CLRec for fairness.
• StackRec [49]. It first uses a stacking operation on the pre-
trained layers/blocks to transfer knowledge from a shallow
model to a deep model and then utilizes iterative stacking to
obtain a deeper but easier-to-train recommendation model.

1https://www.yelp.com/dataset

4.3 Settings
All models are implemented based on TensorFlow. For baselines
with official codes, we utilize the implementations provided by
authors. As for models without open-accessible codes from the
original paper, we prefer the well-tested version from the open-
source community. Specifically, we use code from https://github.
com/Songweiping/GRU4Rec_TensorFlow as the implementation of
GRU4Rec [15]. We implement CL4SRec and CLRec based on the
model descriptions and experimental settings of the correlated pa-
pers since there is no official code or popular implementation from
the open-source community. For fair comparisons, the embedding
dimension size is set to 50, and all models are optimized by Adam.

Recall that our proposed CT4Rec method does not modify the
model architecture and increases the model scale of the backbone
model. Instead, it only involves two effective consistency regulariza-
tion strategies. Thus, we follow the backbone method, i.e., SASRec
[24], to implement our CT4Rec. We use two self-attention layers
and set the head number to 2. The maximum sequence length is 50
for all datasets. We optimize the parameters with the learning rate
of 0.001 and the batch size as 128. The dropout rate of turning off
neurons is set to 0.5. To verify the effect of each component and
their combination, we fix the structure and other hyper-parameters
of the model and only adjust the values of 𝛼 and 𝛽 , where 𝛼 and 𝛽

are selected from {0.1, 0.3, 0.5, 1.0, 2.0, 3.0}. Other details for repro-
ducing our experiments can be found in our anonymous code.

4.4 Offline Evaluation
4.4.1 Evaluation Protocols. Following many previous studies [14,
24, 53, 63], we employ the leave-one-out strategy to evaluate model
performance. Specifically, for each user, we take the last interacted
item for test. Similar to [24, 63], we randomly sample 500 items from
thewhole dataset for each positive item, and rank them by similarity
scores. The model performances are evaluated by top-k Normal-
izedrand Discounted Cumulative Gain (NDCG@𝑘) and top-k Hit
Ratio (HR@𝑘), which are both commonly used in top-k recommen-
dation systems. Specifically, we report HR@𝑘 and NDCG@𝑘 with
𝑘 = {5, 10, 20} for all datasets.

4.4.2 Experimental Results. As shown in Table 2, our proposed
CT4Rec outperforms all other baseline methods, including multi-
ple representative models and state-of-the-art sequential recom-
mendation solutions, on three benchmark datasets and one large
industrial corpus. Compared with other strong methods that uti-
lize data augmentation or/and contrastive learning to obtain better
user representations and mitigate the incompatibility between the
single item prediction task and the vast amounts of parameters
in data sparsity scenarios [24], our CT4Rec is simpler and more
effective without requiring any augmented data or delicate training
strategies in which only two extra objectives are introduced. The
performance advance of CT4Rec over SOTA models based on con-
trastive learning is confirmed by the significant improvements of
HR@𝑘 , and NDCG@𝑘 scores over CLRec and CL4SRec. We also ob-
serve that the training objective in recent baselines performs much
better than the original binary cross-entropy in SASRec, which is
demonstrated by the results that SASRec* increase offline scores
by a large margin over SASRec. Notice that our CT4Rec is imple-
mented by introducing two training objectives into SASRec*. We

https://github.com/Songweiping/GRU4Rec_TensorFlow
https://github.com/Songweiping/GRU4Rec_TensorFlow

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chong Liu et al.

Table 2: Model performance of baselines and our proposed CT4Rec on four offline datasets, where ‘*’ refers to modifying the
original binary cross-entropy loss in SASRec with the training objective in recent baselines, e.g., CLRec, CL4SRec, StackRec.
Our CT4Rec is implemented on SASRec*. Improv. and Improv.* refer to the relative improvement of CT4Rec over SASRec and
SASRec*, respectively. The performance improvement over baselines is statistically significant with 𝑝 < 0.01, in which we
present the experimental results of extra two runs with different random seeds in the Appendix A.4.

Datasets Metric SASRec SASRec* GRU4Rec BERT4Rec TiSASRec StackRec CLRec CL4SRec CT4Rec Improv. Improv.*

Beauty

HR@5 0.2109 0.2194 0.1179 0.0860 0.2024 0.1725 0.1498 0.2275 0.2556 21.19% 16.50%
HR@10 0.2759 0.2748 0.1582 0.1357 0.2746 0.2225 0.1816 0.2896 0.3200 15.98% 16.45%
HR@20 0.3546 0.3392 0.2146 0.2036 0.3508 0.2818 0.2218 0.3624 0.3891 9.73% 14.71%
NDCG@5 0.1523 0.1661 0.0869 0.0572 0.1413 0.1286 0.1177 0.1701 0.1924 26.33% 15.83%
NDCG@10 0.1733 0.1840 0.1000 0.0732 0.1646 0.1447 0.1279 0.1901 0.2132 23.02% 15.87%
NDCG@20 0.1932 0.2003 0.1141 0.0903 0.1839 0.1596 0.1380 0.2085 0.2307 19.41% 15.18%

Sports

HR@5 0.1912 0.1966 0.0961 0.0766 0.1703 0.1318 0.1498 0.2084 0.2196 14.85% 11.70%
HR@10 0.2747 0.2683 0.1499 0.1267 0.2456 0.1962 0.2178 0.2834 0.3010 9.57% 12.19%
HR@20 0.3751 0.3547 0.2295 0.2055 0.3352 0.2780 0.3072 0.3721 0.3950 5.31% 11.36%
NDCG@5 0.1289 0.1398 0.0631 0.0494 0.1159 0.0902 0.1044 0.1488 0.1556 20.71% 11.30%
NDCG@10 0.1558 0.1629 0.0804 0.0654 0.1402 0.1110 0.1263 0.1729 0.1817 16.62% 11.54%
NDCG@20 0.1811 0.1847 0.1003 0.0852 0.1628 0.1315 0.1488 0.1953 0.2055 13.47% 11.26%

Yelp

HR@5 0.2834 0.3216 0.1457 0.1567 0.2935 0.2230 0.2545 0.3173 0.3462 22.16% 7.65%
HR@10 0.4221 0.4469 0.2546 0.2623 0.4257 0.3397 0.3881 0.4451 0.4784 13.34% 7.05%
HR@20 0.5975 0.5989 0.4257 0.4312 0.5839 0.4927 0.5670 0.5993 0.6309 5.59% 5.34%
NDCG@5 0.1889 0.2283 0.0890 0.0996 0.2009 0.1484 0.1702 0.2236 0.2443 29.33% 7.01%
NDCG@10 0.2335 0.2687 0.1239 0.1336 0.2435 0.1859 0.2132 0.2647 0.2869 22.87% 6.77%
NDCG@20 0.2778 0.3070 0.1668 0.1759 0.2834 0.2244 0.2582 0.3036 0.3253 17.10% 5.96%

WeChat

HR@5 0.2756 0.3069 0.1836 0.1943 0.3193 0.2975 0.2849 0.3105 0.3406 25.58% 10.98%
HR@10 0.4103 0.4366 0.2231 0.2247 0.4406 0.4173 0.3985 0.4511 0.4861 18.47% 11.34%
HR@20 0.5291 0.5484 0.2884 0.2907 0.5539 0.5197 0.4852 0.5507 0.5979 13.00% 9.03%
NDCG@5 0.1948 0.2131 0.1272 0.1266 0.2036 0.2082 0.1939 0.2195 0.2361 21.20% 10.79%
NDCG@10 0.2357 0.2743 0.1447 0.1394 0.2615 0.2576 0.2371 0.2827 0.3057 29.70% 11.40%
NDCG@20 0.2869 0.3013 0.1693 0.1526 0.2957 0.2811 0.2639 0.3089 0.3314 15.51% 9.99%

compare CT4Rec with SASRec* to calibrate the effect of our consis-
tency training method. The universal enhancement of CT4Rec over
SASRec* on four datasets and all HR@𝑘 and NDCG@𝑘 (relative
improvements ranging from 5.34% to 16.50%) verify the superiority
of our proposed simple method.

4.5 Online Evaluation
4.5.1 Evaluation Protocols. We further perform an online A/B test
that resembles [11] to evaluate our CT4Rec in a real-world system.
Commonly, an online recommendation system is divided into four
stages, including matching, pre-ranking, ranking, and re-ranking.
We have deployed CT4Rec for PC Wechat Top Stories recommenda-
tion in the matching stage. To calibrate the effect of CT4Rec for the
online system, CT4Rec is implemented as an additional channel in
the current matchingmodule with the rest of the system unchanged,
where the existing matching module refers to an ensemble model
that combines multiple methods, e.g., rule-based, reinforcement-
based, sequence-based, DSSM, self-distillation. In the online A/B
test, we utilize two metrics, i.e., click-through rate (CTR) and aver-
age click number per capita (ACN), to evaluate model performance.
The online test lasts for 7 days and involves nearly 3 million users.

4.5.2 Experimental Results. The performance improvement of CT4Rec
on real-world recommendation service is reported in Table 3 with

Table 3: Performance improvement of online A/B test.

CTR ACN
+2.717% +3.679%

the significance level 𝑝 < 0.01, which can be seen that only imple-
menting CT4Rec as an additional channel in the matching module
with the rest of the system unchanged can yield very impressive
performance improvement over the original ensemble model. Our
method increases CTR and ACN metrics by 2.717% and 3.679%,
respectively. This indicates that our proposed simple method is not
only effective for offline benchmarks and evaluation metrics but
also generalizes well to the real-world online system. Since CT4Rec
restricts the uncertainty of sub-models without involving extra
model structure, the computation cost of CT4Rec for online serv-
ing is identical to the original backbone model. Thus, CT4Rec can
significantly enhance online performance without adding online
computation costs, which is a definite advantage for online serving,
especially considering the machine costs.

5 ANALYSIS
We have demonstrated the impressive performance of our proposed
simple CT4Rec on offline benchmarks and the online A/B test. In

CT4Rec: Simple yet Effective Consistency Training for Sequential Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 3: Evaluation results for ablation study and analysis of 𝛼 and 𝛽 . (a) CT4Rec with L𝑏𝑎𝑠𝑖𝑐 and L𝑅𝐷 . (b) CT4Rec with L𝑏𝑎𝑠𝑖𝑐
and L𝐷𝑅 . (c) and (d) replace L𝐷𝑅 with cosine and L2 loss, respectively, where the orange lines are the performance of SASRec*.

this section, we launch extensive experiments to understand and
analyze CT4Rec from different perspectives. For convenience, these
studies are performed on Beauty. More specifically, we mainly focus
on: 1) the effect of each introduced objective (Ablation Study), 2) the
influence of several important hyper-parameters (Hyper-Parameter
Analysis), 3) the extension of CT4Rec to data augmentation (Exten-
sion to Data Augmentation), 4) the change of training process and
cost resulted by CT4Rec (Training and Cost Analysis)

5.1 Ablation Study
We perform an ablation study to explore the effect of two objec-
tives in Section 3, i.e., regularized dropout (RD) and distributed
regularization (DR), where the results are illustrated in Figure 3.

RDObjective.As shown in the left sub-figure (a), the introduced
RD objective achieves significant performance improvement over
the backbone SASRec* model. Compared with DR objective and
its variants, RD loss contributes most to the performance increase,
which concludes that launching consistency regularization in the
model output space is the most beneficial to SASRec*, which is
similar to the observations in other tasks [29]. The possible reason
might be that RD consistency regularization affects directly on the
same space of the model output probability distribution.

DR Objective. We can see that the unsupervised DR loss can
also yield substantial performance gains, which points out that un-
supervised consistency regularization in user representation space
for data sparsity sequential recommendation task is also essential.
We also adapt two typical unsupervised strategies in previous stud-
ies [8, 35, 64] to regularize user representations, including cosine
similarity and L2 distance. As shown in the right two sub-figures
in Figure 3, these two methods have not brought meaningful im-
provement upon the backbone method, which further proves that
our designed DR objective is more preferable for consistency regu-
larization in the representation space.

5.2 Hyper-Parameter Analysis
We mainly consider several critical hyper-parameters in this part,
including 𝛼 and 𝛽 in Equation 7, and the dropout rate.

Figure 4: The impact of different dropout rates for CT4Rec
and SASRec* on the Beauty dataset.

The Effect of 𝛼 . Figure 3 also gives the results of different 𝛼
values. Considering that there are many feasible combinations of
the (𝛼 , 𝛽) grid, we temporarily remove the DR objective and only
examine the influence of 𝛼 for RD. It can be observed that a small
value of 𝛼 can bring meaningful performance improvement. With
the increase of𝛼 , the performance improvement further increases in
which the best result is achieved when 𝛼 = 2.0. These results further
confirm that the consistency regularization directly performed on
the output space is very effective even when it only takes a small
proportion for the final training objective. With a further increase
of 𝛼 , the model will pay more attention to the consistency of model
outputs, which will dilute the original item prediction objective,
resulting in worse performance (e.g., 𝛼 = 2.0 v.s.,𝛼 = 3.0).

The Influence of 𝛽 . Similar to the analysis of 𝛼 , we only study
the impact of 𝛽 for each single unsupervised regularization loss
(i.e., DR, cosine, and L2). Different from 𝛼 , the DR loss has no
influence on the overall performance when the value of 𝛽<0.3.
This is probably because the consistency regularization on the user
representations is overwhelmed and adapted when passing to the
output space. With the increase of 𝛽 , DR loss gradually produces a
more important role and consistently improves model performance
until 𝛽>2.0. And also, a large 𝛽 value will force the model to focus
on the consistency of user representation rather than perform the
item prediction task. For the cosine objective, different 𝛽 values
have a limited influence on evaluation results. As for the L2 loss, a
large 𝛽 value will cause inferior performance.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chong Liu et al.

Table 4: Performance comparison of different consistency regularization strategies in the data augmentation setting.

Aug.[53] Metrics SASRec SASRec* +CL +L2 +Cos +DR +RD +CT4Rec Improv. Improv.*

Reorder

HR@10 0.2759 0.2748 0.2768 0.2867 0.2856 0.2905 0.2857 0.3076 11.49% 11.94%
HR@20 0.3546 0.3392 0.3407 0.3552 0.3542 0.3558 0.3546 0.3776 6.49% 11.32%

NDCG@10 0.1523 0.1661 0.1856 0.1892 0.1900 0.1954 0.1899 0.2047 34.41% 23.24%
NDCG@20 0.1932 0.2003 0.2017 0.2064 0.2073 0.2119 0.2072 0.2224 15.11% 11.03%

Mask

HR@10 0.2759 0.2748 0.2803 0.2831 0.2898 0.2892 0.2891 0.3140 13.81% 14.26%
HR@20 0.3546 0.3392 0.3452 0.3484 0.3553 0.3542 0.3609 0.3868 9.08% 14.03%

NDCG@10 0.1523 0.1661 0.1861 0.1879 0.1941 0.1948 0.1886 0.2061 35.33% 24.08%
NDCG@20 0.1932 0.2003 0.2025 0.2044 0.2106 0.2111 0.2067 0.2244 16.15% 12.03%

Analysis on Dropout Rates. Besides the above analysis, we
also study how the dropout rate affects the effectiveness of our
CT4Rec since different dropout rates will lead to varying degrees
of inconsistency. As demonstrated in Figure 4, dropout rates have
a significant influence on the performance of the backbone model,
and our proposed consistency training is applicable and effective
when the dropout rate<0.7. However, our proposed CT4Rec will
lead to a negative effect when the dropout rate>0.8. We speculate
that the reason behind this might be the data sparsity issue and
irreconcilable inconsistency.

5.3 Extension to Data Augmentation
The above studies prove the effectiveness of each component of
our CT4Rec and its capability of leveraging more consistency regu-
larization signals. We then study its generalization ability to other
inconsistency scenarios. More concretely, we utilize our consistency
training method to regularize the inconsistency brought by data
other than the above-mentioned model-side inconsistency, i.e., we
replace dropout with data augmentation methods to create two dif-
ferent user representations, and the corresponded task outputs for
each user so as to conduct consistency regularization. To align with
recent sequential recommendation methods based on constrastive
learning, we leverage two easily implemented augmentation strate-
gies from CL4SRec [24], i.e., Reorder and Mask. In doing so, we
can directly compare the effects of different training objectives
(besides the item prediction one for the sequential recommenda-
tion) on the augmented data, including unsupervised methods (i.e.,
CL, cosine, L2, DR), the supervised regularization in the output
space (RD), and the combination of DR and RD (CT4Rec). Table 4
presents the experimental results for the data augmentation setting.
We can observe that: 1) Our introduced DR objective is the most
effective compared with other single methods, i.e., the consistency
regularization on the representation space is the most preferable
for than data augmentation scenario, which is in contrast with the
observation for the dropout setting. We speculate that the label-
invariant data augmentation methods can lead to permuted and
perturbed representation variants, which need more consistency
regularization, while the label-invariant strategy does not deterio-
rate the inconsistency in the output space. 2) The combination of
the consistency regularization in the representation space and the
output space (CT4Rec) still performs the best with consistent and
significant performance over other training objectives.

Figure 5: NDCG@10 andHR@10 curves on the valid set along
with training epoch and time on the Beauty dataset.

5.4 Training and Cost Analysis
Since our CT4Rec does not modify the model structure of the back-
bone model or introduce extra augmented data, we mainly ana-
lyze the changes in the training process. We plot the curves of
HR@10and NDCG@10 scores on the valid set along the training
epoch number and time (seconds) for SASRec*, CL4SRec and our
CT4Rec models, shown in Figure 5. At the early training stage, the
backbone SASRec* model converges quickly with the same training
epochs (around 15 epochs) and model performance as CT4Rec, but
our CT4Rec can continuously improve the performance on the well-
trained SASRec* model. It concludes that our consistency training
objectives do not lead to more training epochs on the backbone SAS-
Rec*. But for CL4SRec that combines contrastive learning objective
with SASRec*, it converges with much more training epochs and
only moderate performance improvement. As for convergence time
(seconds), our model indeed is slower than the backbone model
since our consistency training objectives need an extra forward
process (dropout) in each training step but achieves a much supe-
rior performance. Compared with CL4SRec, our CT4Rec is much
more efficient and effective with a much better final optimum and
less convergence time even when we haven’t calculated the time
cost of data augmentation and negative sampling for CL4SRec.

Through the analysis, we can conclude that: 1) CT4Rec is more
efficient and effective than the method based on contrastive learn-
ing even without counting its time cost of data augmentation and
negative sampling; 2) CT4Rec indeed introduces extra training time

CT4Rec: Simple yet Effective Consistency Training for Sequential Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 5: Dataset statistics of two corpora from real-world
recommendation system in WeChat platform.

Dataset #Instances #Fields #Features
Wechat-Video 41M 39 40.28M
Wechat-Article 138M 25 21.52M

for the backbone model, which can be mitigated by early stop inso-
much as our CT4Rec can quickly surpass the backbone model in the
early stage and with a much better final convergence performance.

6 EXTENSION TO CTR PREDICTION
Besides the application of CT4Rec on the matching stage, we further
explore the effectiveness of our Consistency Training for the CTR
prediction task denoted as CT4CTR, serving on the ranking stage.
Concretely, for each instance (𝒙, 𝑦) ∈ D, 𝒙 denotes a multi-filed
feature vector input, and label 𝑦 ∈ {0, 1} indicates whether the user
clicks the item. The CTR prediction is to obtain the probability 𝑦
that a user will click a certain item in a given context.

We utilize a widely used structure DeepFM in this section, which
simply applies two components (i.e., FM component and deep com-
ponent) and still achieves promising performance in the industry.
For each input 𝒙 , we forward it twice in the deep component of
DeepFM with different dropouts and learn the consistency between
these two sub-models. Similar to Sec. 3, two regularization meth-
ods (i.e. RD loss, DR loss) are utilized to constrain the two sub-
models generated from dropout. Concretely, input 𝒙 passes the
deep component twice and obtains 𝑦𝑑1

𝐷𝑁𝑁
and 𝑦𝑑2

𝐷𝑁𝑁
with different

dropouts. Thus, with the unchanged part 𝑦𝐹𝑀 , the final prediction
can be defined as 𝑦𝑑1 and 𝑦𝑑2 and a two-dimensional distribution
P(𝒙𝑑𝑖) = (𝑦𝑑𝑖 , 1−𝑦𝑑𝑖) can be formulated to calculate RD loss. Mean-
while, we compare the deep representations of instances in each
mini-batch,e.g., (𝒙𝒅1

1 , 𝒙𝒅1
2 , . . . , 𝒙𝒅1

𝒏) and (𝒙𝒅2
1 , 𝒙𝒅2

2 , . . . , 𝒙𝒅2
𝒏). Similar

to the matching task, for instance, 𝒙1, we can calculate the similarity
𝑠𝑖𝑚(𝒙𝒅𝒋

1 , 𝒙
𝒅𝒋

𝒊), 𝑖 = 2, 3, . . . , 𝑛, so as to obtain similarity distribution

between deep representations denoted as P𝑠 (𝒙
𝒅𝒋

1). Then, similar
to Eq. 5, a bidirectional KL-divergence loss to regularize the two
distributions P𝑠 (𝒙𝒅1

1) and P𝑠 (𝒙
𝒅2
1) can be denoted as DR loss.

We compare CT4CTR with: (1) LR [41], a simple baseline model
for CTR prediction, which only models the linear combination of
raw features. (2) FM [39]. Since LR fails to capture non-linear fea-
ture interactions, the factorization machine (FM) has been proposed
to model second-order feature interactions. It is notable that FM
only has a linear time complexity in terms of the number of features.
(3) Wide&Deep[4]. With the development of deep models, Google
achieves great improvement by combining a wide (or shallow) net-
work and a deep network. This is a general learning framework that
can achieve the advantages of both wide networks and deep net-
works. (4) DeepFM [10], which extends Wide&Deep by substituting
LR with FM to precisely model second-order feature interactions.
(5) xDeepFM[28], which captures high-order interactions by its
core module, Compressed Interaction Network (CIN). CIN takes an
outer product of a stacked feature matrix in a vector-wise way. (6)
AutoInt[42], which automatically models the high-order interac-
tions of input features by using self-attention networks.

To evaluate the performance of CT4CTR, we build two private
industrial datasets from the WeChat ecosystem: Wechat-Video and
Wechat-Article, and both of them are collected from a real-world
recommendation scenario, i.e., WeChat Subscriptions. We choose
them because they are sampled from real click logs in production,
and both have tens of millions of samples, making the results mean-
ingful to industrial practitioners. We split Train and Test sets in
chronological order, and Table 5 summarizes the detailed statistics.

Table 6: Offline performance of CT4CTR in the CTR predic-
tion task, with DeepFM as backbone.

WeChat-Video WeChat-Article
Model AUC Model AUC
LR 0.7569 LR 0.7401
FM 0.7608 FM 0.7465
Wide&Deep 0.7695 Wide&Deep 0.7538
DeepFM 0.7719 DeepFM 0.7552
AutoInt 0.7703 AutoInt 0.7519
xDeepFM 0.7738 xDeepFM 0.7560
CT4CTR 0.7766 CT4CTR 0.7593

As shown in Table 6, our proposed CT4CTR outperforms all
other baseline methods in CTR prediction on AUC, including mul-
tiple state-of-the-art CTR prediction solutions, on two large indus-
trial corpora. Besides, we have deployed CT4CTR on a real-world
recommendation system that serves nearly one billion users with
dramatically high online machine costs. In the online A/B test, we
achieve +1.203% on the Video scenario and +2.341% on the Article
scenario, as for the CTR metric. Moreover, it is a remarkable success
that CT4CTR can enhance online performance without involving
extra computation costs and machine costs, which is essential for
online serving. Besides, the improvement of such a mature system
that already has stable and advanced online models is extremely
challenging, which further proves the effectiveness of CT4CTR.

Table 7: Performance improvement of online A/B test.

Scenario Video Article
CTR +1.203% +2.341%

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed a simple yet very effective consistency
training method for the sequential recommendation task, namely
CT4Rec, which only involves two bidirectional KL losses. We first
introduce a top-performed regularization in the output space by
minimizing the bidirectional KL loss of two different outputs. We
then design a novel consistency training term in the representation
space by minimizing the distributed probability of two user rep-
resentations. Extensive experiments and analysis demonstrate its
effectiveness, efficiency, generalization ability, and compatibility.
Besides experiments on the recall task in recommendation systems,
further exploration reveals that the introduced consistency train-
ing strategies (i.e., DR and RD) are still very effective for the CTR
prediction task. In the near future, we will thoroughly study the
pros and cons of consistency training for the CTR task.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chong Liu et al.

REFERENCES
[1] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and

Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. 456–464.

[2] Tong Chen, Hongzhi Yin, Hongxu Chen, Rui Yan, Quoc Viet Hung Nguyen, and
Xue Li. 2019. Air: Attentional intention-aware recommender systems. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 304–315.

[3] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential recommendation with user memory networks.
In Proceedings of the eleventh ACM international conference on web search and
data mining. 108–116.

[4] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186.

[7] Xinyan Fan, Zheng Liu, Jianxun Lian, Wayne Xin Zhao, Xing Xie, and Ji-Rong
Wen. 2021. Lighter and better: low-rank decomposed self-attention networks for
next-item recommendation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1733–1737.

[8] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive
Learning of Sentence Embeddings. arXiv preprint arXiv:2104.08821 (2021).

[9] Chuan Guo, Ali Mousavi, Xiang Wu, Dan Holtmann-Rice, Satyen Kale, Sashank
Reddi, and Sanjiv Kumar. 2019. Breaking the glass ceiling for embedding-based
classifiers for large output spaces. (2019).

[10] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[11] XiaoboHao, Yudan Liu, Ruobing Xie, Kaikai Ge, Linyao Tang, Xu Zhang, and Leyu
Lin. 2021. Adversarial Feature Translation for Multi-domain Recommendation.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 2964–2973.

[12] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. In Proceedings of the eleventh ACM conference on recommender
systems. 161–169.

[13] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In 2016 IEEE 16th International
Conference on Data Mining (ICDM). IEEE, 191–200.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[15] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[17] Liang Hu, Longbing Cao, Shoujin Wang, Guandong Xu, Jian Cao, and Zhiping Gu.
2017. Diversifying Personalized Recommendation with User-session Context.. In
IJCAI. 1858–1864.

[18] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.
2018. Improving sequential recommendation with knowledge-enhanced mem-
ory networks. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. 505–514.

[19] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2553–2561.

[20] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-
jee, and Fillia Makedon. 2021. A survey on contrastive self-supervised learning.
Technologies 9, 1 (2021), 2.

[21] How Jing and Alexander J Smola. 2017. Neural survival recommender. In Proceed-
ings of the Tenth ACM International Conference on Web Search and Data Mining.
515–524.

[22] Manas R Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K Adams,
Pranav Khaitan, Jiahui Liu, and Quoc V Le. 2020. Neural input search for large
scale recommendation models. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2387–2397.

[23] Taegwan Kang, Hwanhee Lee, Byeongjin Choe, and Kyomin Jung. 2021. Entan-
gled Bidirectional Encoder to Autoregressive Decoder for Sequential Recommen-
dation. In Proceedings of the 44th International ACM SIGIR Conference on Research

and Development in Information Retrieval. 1657–1661.
[24] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[25] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[26] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. 1419–1428.

[27] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time interval aware self-
attention for sequential recommendation. In Proceedings of the 13th international
conference on web search and data mining. 322–330.

[28] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1754–1763.

[29] Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min
Zhang, and Tie-Yan Liu. 2021. R-Drop: Regularized Dropout for Neural Networks.
arXiv preprint arXiv:2106.14448 (2021).

[30] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommenda-
tions: Item-to-item collaborative filtering. IEEE Internet computing 7, 1 (2003),
76–80.

[31] Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. 2016. Context-
aware sequential recommendation. In 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 1053–1058.

[32] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: short-
term attention/memory priority model for session-based recommendation. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1831–1839.

[33] Zhiwei Liu, Ziwei Fan, Yu Wang, and Philip S Yu. 2021. Augmenting Sequential
Recommendation with Pseudo-Prior Items via Reversely Pre-training Trans-
former. arXiv preprint arXiv:2105.00522 (2021).

[34] Fuyu Lv, Taiwei Jin, Changlong Yu, Fei Sun, Quan Lin, Keping Yang, and Wil-
fred Ng. 2019. SDM: Sequential deep matching model for online large-scale
recommender system. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management. 2635–2643.

[35] Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu, Yuntian Deng, and Eduard
Hovy. 2017. Dropout with expectation-linear regularization. International Con-
ference on Learning Representations (2017).

[36] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[37] Ruihong Qiu, Jingjing Li, Zi Huang, and Hongzhi Yin. 2019. Rethinking the item
order in session-based recommendation with graph neural networks. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management. 579–588.

[38] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi.
2017. Personalizing session-based recommendations with hierarchical recurrent
neural networks. In Proceedings of the Eleventh ACM Conference on Recommender
Systems. 130–137.

[39] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference
on data mining. IEEE, 995–1000.

[40] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811–820.

[41] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
clicks: estimating the click-through rate for new ads. In Proceedings of the 16th
international conference on World Wide Web. 521–530.

[42] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161–1170.

[43] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[44] Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved recurrent neural
networks for session-based recommendations. In Proceedings of the 1st workshop
on deep learning for recommender systems. 17–22.

[45] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. 565–573.

[46] Trinh Xuan Tuan and Tu Minh Phuong. 2017. 3D convolutional networks
for session-based recommendation with content features. In Proceedings of the
eleventh ACM conference on recommender systems. 138–146.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

CT4Rec: Simple yet Effective Consistency Training for Sequential Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

you need. In Advances in neural information processing systems. 5998–6008.
[48] Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2020.

Make it a chorus: knowledge-and time-aware item modeling for sequential rec-
ommendation. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 109–118.

[49] Jiachun Wang, Fajie Yuan, Jian Chen, Qingyao Wu, Min Yang, Yang Sun, and
Guoxiao Zhang. 2021. StackRec: Efficient Training of Very Deep Sequential
Recommender Models by Iterative Stacking. In Proceedings of the 44th Interna-
tional ACM SIGIR conference on Research and Development in Information Retrieval.
357–366.

[50] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 33. 346–353.

[51] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen
Zhuang, Junhua Fang, and Xiaofang Zhou. 2019. Graph Contextualized Self-
Attention Network for Session-based Recommendation.. In IJCAI, Vol. 19. 3940–
3946.

[52] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, Victor S Sheng S. Sheng,
Zhiming Cui, Xiaofang Zhou, and Hui Xiong. 2019. Recurrent convolutional
neural network for sequential recommendation. In The world wide web conference.
3398–3404.

[53] Fei Sun Xu Xie, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Bolin Ding, and Bin
Cui. 2021. Contrastive Learning for Sequential Recommendation. (2021).

[54] Tiansheng Yao, Xinyang Yi, Derek Zhiyuan Cheng, Felix Yu, Ting Chen, Aditya
Menon, Lichan Hong, Ed H Chi, Steve Tjoa, Jieqi Kang, et al. 2020. Self-supervised
Learning for Large-scale Item Recommendations. arXiv preprint arXiv:2007.12865
(2020).

[55] Tiansheng Yao, Xinyang Yi, Derek Zhiyuan Cheng, Felix Yu, Ting Chen, Aditya
Menon, Lichan Hong, Ed H Chi, Steve Tjoa, Jieqi Kang, et al. 2020. Self-supervised
learning for deep models in recommendations. arXiv e-prints (2020), arXiv–2007.

[56] Haochao Ying, Fuzhen Zhuang, Fuzheng Zhang, Yanchi Liu, Guandong Xu, Xing
Xie, Hui Xiong, and Jian Wu. 2018. Sequential recommender system based

on hierarchical attention network. In IJCAI International Joint Conference on
Artificial Intelligence.

[57] Lu Yu, Chuxu Zhang, Shangsong Liang, and Xiangliang Zhang. 2019. Multi-order
attentive ranking model for sequential recommendation. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 5709–5716.

[58] Xu Yuan, Dongsheng Duan, Lingling Tong, Lei Shi, and Cheng Zhang. 2021.
ICAI-SR: Item Categorical Attribute Integrated Sequential Recommendation.
In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1687–1691.

[59] Shengyu Zhang, Dong Yao, Zhou Zhao, Tat-Seng Chua, and Fei Wu. 2021.
Causerec: Counterfactual user sequence synthesis for sequential recommen-
dation. In Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 367–377.

[60] Chang Zhou, Jinze Bai, Junshuai Song, Xiaofei Liu, Zhengchao Zhao, Xiusi Chen,
and Jun Gao. 2018. Atrank: An attention-based user behavior modeling frame-
work for recommendation. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32.

[61] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable
graph embedding for asymmetric proximity. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 31.

[62] Chang Zhou, Jianxin Ma, Jianwei Zhang, Jingren Zhou, and Hongxia Yang. 2021.
Contrastive learning for debiased candidate generation in large-scale recom-
mender systems. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 3985–3995.

[63] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang,
Zhongyuan Wang, and Ji-Rong Wen. 2020. S3-rec: Self-supervised learning
for sequential recommendation with mutual information maximization. In Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge
Management. 1893–1902.

[64] Konrad Zolna, DevanshArpit, Dendi Suhubdy, and Yoshua Bengio. 2018. Fraternal
Dropout. In International Conference on Learning Representations.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chong Liu et al.

A APPENDIX
A.1 Model structure of CT4CTR
The model structure of CT4CTR is shown in Figure 6. CT4CTR
takes user features and item features as input and outputs click
probabilities for each user and item pair in the ranking stage of rec-
ommendation. For the deep component of DeepFM, input features
are transformed into vector representations via the embedding layer
and deep neural network with different hidden dropout masks. In
addition, Distributed Regularization Loss and Regularized Dropout
Loss are introduced to restrain these representations generated by
different dropout masks.

Figure 6: Model structure of CT4CTR.

A.2 Training Algorithm

Algorithm 1 CT4Rec algorithm

Input: Training data D =
{
𝑠𝑢𝑖 ,𝑡

}𝑁
𝑖=1

Output: model parameters 𝜔
1: Initialization model with parameters 𝜔
2: while not converged do
3: 𝑠𝑢𝑖 ,𝑡 ∼ D
4: 𝒔𝒅1

𝒖𝒊,𝒕
← 𝑓 (𝑠𝑢𝑖 ,𝑡 ;𝜔) with first dropout

5: 𝒔𝒅2
𝒖𝒊,𝒕
← 𝑓 (𝑠𝑢𝑖 ,𝑡 ;𝜔) with second dropout

6: 𝑔← ▽𝜔L𝑓 𝑖𝑛𝑎𝑙 (𝒔𝒅1
𝒖𝒊,𝒕

, 𝒔𝒅2
𝒖𝒊,𝒕

;𝜔)
7: 𝜔 ← 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒 (𝜔,𝑔)
8: end while

The whole training process of CT4Rec is presented in Algorithm
1. As shown in Line 3-5, we obtain two user representations 𝒔𝒅1

𝒖𝒊,𝒕

and 𝒔𝒅2
𝒖𝒊,𝒕

by going forward the model twice for each user sequence
𝑠𝑢𝑖 ,𝑡 . Line 6-7 calculate the L𝑓 𝑖𝑛𝑎𝑙 according to the loss function
7, and update the model parameters. The training process will
continue until convergence.

A.3 More Backbone
To verify the universal influence of CT4Rec, we also apply it to
GRU4Rec [15] denoted as CT4Rec𝐺 and evaluate its performance on
four datasets. Table 8 shows that CT4Rec brings significant improve-
ment compared with the original GRU4Rec on all datasets and all
HR@𝑘 and NDCG@𝑘 scores (relative improvements ranging from
3.48% to 11.51%), which indicates that our method can be widely
applied to different model structures and achieve enhancement.

Table 8: Performance of CT4Rec with GRU4Rec as backbone

Datasets Metric GRU4Rec CT4Rec𝐺 Improv.
Beauty HR@5 0.1149 0.1247 8.53%

HR@10 0.1574 0.1665 5.78%
HR@20 0.2157 0.2232 3.48%
NDCG@5 0.0851 0.0923 8.46%
NDCG@10 0.0987 0.1057 7.09%
NDCG@20 0.1133 0.1200 5.91%

Sport HR@5 0.0997 0.1057 6.02%
HR@10 0.1558 0.1665 6.87%
HR@20 0.2356 0.2504 6.28%
NDCG@5 0.0656 0.0699 6.55%
NDCG@10 0.0836 0.0894 6.94%
NDCG@20 0.1037 0.1105 6.56%

Yelp HR@5 0.1460 0.1628 11.51%
HR@10 0.2570 0.2817 9.61%
HR@20 0.4335 0.4601 6.14%
NDCG@5 0.0903 0.1011 11.96%
NDCG@10 0.1259 0.1392 10.56%
NDCG@20 0.1702 0.1840 8.11%

WeChat HR@5 0.1833 0.1946 6.61%
HR@10 0.2235 0.2378 6.40%
HR@20 0.2891 0.3042 5.22%
NDCG@5 0.1267 0.1369 8.05%
NDCG@10 0.1450 0.1581 9.03%
NDCG@20 0.1694 0.1804 6.49%

A.4 More Experimental Results
Here, we present the experimental results of extra two runs with
different random seeds.

CT4Rec: Simple yet Effective Consistency Training for Sequential Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 9: The second run of baselines and our proposed CT4Rec on four offline datasets, where ‘*’ refers to modifying the
original binary cross-entropy loss in SASRec with the training objective in recent baselines, e.g., CLRec, CL4SRec, StackRec.
Our CT4Rec is implemented on SASRec*. Improv. and Improv.* refer to the relative improvement of CT4Rec over SASRec and
SASRec*, respectively. Except for the random seed, the other settings are the same as Table 2.

Datasets Metric SASRec SASRec* GRU4Rec BERT4Rec TiSASRec StackRec CLRec CL4SRec CT4Rec Improv. Improv.*
HR@5 0.2127 0.2162 0.1184 0.0835 0.2087 0.1685 0.1528 0.2284 0.2565 20.59% 18.64%
HR@10 0.2805 0.2707 0.1592 0.1323 0.2805 0.2167 0.1872 0.2894 0.3211 14.47% 18.62%
HR@20 0.3583 0.3340 0.2157 0.1997 0.3569 0.2779 0.2288 0.3606 0.3915 9.27% 17.22%
NDCG@5 0.1521 0.1639 0.0873 0.0550 0.1450 0.1272 0.1198 0.1704 0.1927 26.69% 17.57%
NDCG@10 0.1740 0.1815 0.1004 0.0707 0.1682 0.1427 0.1309 0.1901 0.2136 22.76% 17.69%

Beauty

NDCG@20 0.1937 0.1975 0.1147 0.0876 0.1875 0.1581 0.1415 0.2081 0.2314 19.46% 17.16%
HR@5 0.1918 0.1963 0.0978 0.0738 0.1716 0.1321 0.1529 0.2052 0.2226 16.06% 13.40%
HR@10 0.2753 0.2684 0.1543 0.1250 0.2457 0.1964 0.2187 0.2798 0.3026 9.92% 12.74%
HR@20 0.3727 0.3550 0.2336 0.2048 0.3342 0.2797 0.3080 0.3687 0.3964 6.36% 11.66%
NDCG@5 0.1302 0.1393 0.0651 0.0481 0.1166 0.0907 0.1064 0.1457 0.1573 20.81% 12.92%
NDCG@10 0.1571 0.1626 0.0832 0.0645 0.1405 0.1111 0.1276 0.1697 0.1831 16.55% 12.61%

Sport

NDCG@20 0.1816 0.1844 0.1032 0.0846 0.1627 0.1321 0.1501 0.1921 0.2067 13.82% 12.09%
HR@5 0.2826 0.3180 0.1463 0.1518 0.2938 0.2204 0.2511 0.3159 0.3485 23.32% 9.59%
HR@10 0.4252 0.4421 0.2589 0.2557 0.4225 0.3298 0.3855 0.4416 0.4807 13.05% 8.73%
HR@20 0.5991 0.5941 0.4345 0.4202 0.5815 0.4620 0.5648 0.5967 0.6342 5.86% 6.75%
NDCG@5 0.1870 0.2257 0.0906 0.0954 0.2020 0.1479 0.1680 0.2212 0.2459 31.50% 8.95%
NDCG@10 0.2329 0.2657 0.1268 0.1287 0.2434 0.1831 0.2113 0.2618 0.2886 23.92% 8.62%

Yelp

NDCG@20 0.2767 0.3039 0.1708 0.1700 0.2835 0.2165 0.2565 0.3009 0.3273 18.29% 7.70%
HR@5 0.2763 0.3067 0.1825 0.1924 0.3162 0.2981 0.2868 0.3103 0.3416 23.63% 11.38%
HR@10 0.4113 0.4356 0.2238 0.2261 0.4401 0.4165 0.3993 0.4504 0.4854 18.02% 11.43%
HR@20 0.5274 0.5481 0.2897 0.2926 0.5538 0.5180 0.4871 0.5511 0.5981 13.41% 9.12%
NDCG@5 0.1961 0.2152 0.1287 0.1252 0.2060 0.2066 0.1947 0.2207 0.2373 21.01% 10.27%
NDCG@10 0.2347 0.2762 0.1472 0.1416 0.2583 0.2583 0.2379 0.2817 0.3070 30.81% 11.15%

WeChat

NDCG@20 0.2882 0.3030 0.1683 0.1547 0.2977 0.2806 0.2659 0.3083 0.3335 15.72% 10.07%

Table 10: The third run of baselines and our proposed CT4Rec on four offline datasets, where ‘*’ refers to modifying the original
binary cross-entropy loss in SASRec with the training objective in recent baselines, e.g., CLRec, CL4SRec, StackRec. Our CT4Rec
is implemented on SASRec*. Improv. and Improv.* refer to the relative improvement of CT4Rec over SASRec and SASRec*,
respectively. Except for the random seed, the other settings are the same as Table 2.

Datasets Metric SASRec SASRec* GRU4Rec BERT4Rec TiSASRec StackRec CLRec CL4SRec CT4Rec Improv. Improv.*
HR@5 0.2087 0.2198 0.1149 0.0840 0.2062 0.1697 0.1528 0.2240 0.2576 23.43% 17.20%
HR@10 0.2758 0.2740 0.1574 0.1319 0.2768 0.2157 0.1853 0.2842 0.3208 16.32% 17.08%
HR@20 0.3517 0.3360 0.2157 0.2025 0.3522 0.2764 0.2255 0.3558 0.3911 11.20% 16.40%
NDCG@5 0.1482 0.1674 0.0851 0.0550 0.1441 0.1272 0.1198 0.1679 0.1933 30.43% 15.47%
NDCG@10 0.1699 0.1849 0.0987 0.0704 0.1668 0.1420 0.1303 0.1873 0.2138 25.84% 15.63%

Beauty

NDCG@20 0.1890 0.2005 0.1133 0.0880 0.1859 0.1573 0.1404 0.2054 0.2315 22.49% 15.46%
HR@5 0.1908 0.1968 0.0997 0.0781 0.1721 0.1334 0.1543 0.2082 0.2198 15.20% 11.69%
HR@10 0.2734 0.2680 0.1558 0.1294 0.2447 0.1979 0.2215 0.2832 0.2975 8.81% 11.01%
HR@20 0.3733 0.3546 0.2356 0.2090 0.3328 0.2802 0.3106 0.3731 0.3915 4.88% 10.41%
NDCG@5 0.1308 0.1409 0.0656 0.0502 0.1169 0.0908 0.1077 0.1481 0.1556 18.96% 10.43%
NDCG@10 0.1574 0.1638 0.0836 0.0666 0.1403 0.1115 0.1293 0.1723 0.1807 14.80% 10.32%

Sport

NDCG@20 0.1825 0.1856 0.1037 0.0866 0.1625 0.1322 0.1517 0.1949 0.2044 12.00% 10.13%
HR@5 0.2887 0.3194 0.1460 0.1522 0.2976 0.2202 0.2573 0.3214 0.3475 20.37% 8.80%
HR@10 0.4313 0.4471 0.2570 0.2559 0.4294 0.3295 0.3911 0.4489 0.4803 11.36% 7.43%
HR@20 0.6023 0.6011 0.4335 0.4227 0.5857 0.4628 0.5649 0.6013 0.6326 5.03% 5.24%
NDCG@5 0.1922 0.2264 0.0903 0.0962 0.2045 0.1476 0.1725 0.2250 0.2458 27.89% 8.57%
NDCG@10 0.2381 0.2675 0.1259 0.1294 0.2470 0.1828 0.2155 0.2661 0.2886 21.21% 7.89%

Yelp

NDCG@20 0.2812 0.3064 0.1702 0.1712 0.2865 0.2165 0.2592 0.3045 0.3270 16.29% 6.72%
HR@5 0.2726 0.3073 0.1842 0.1937 0.3214 0.2958 0.2864 0.3112 0.3409 25.06% 10.93%
HR@10 0.4091 0.4361 0.2261 0.2253 0.4417 0.4181 0.4003 0.4517 0.4852 18.60% 11.26%
HR@20 0.5280 0.5472 0.2891 0.2926 0.5554 0.5208 0.4868 0.5502 0.5965 12.97% 9.01%
NDCG@5 0.1932 0.2143 0.1277 0.1271 0.2051 0.2061 0.1953 0.2175 0.2353 21.79% 9.80%
NDCG@10 0.2352 0.2747 0.1457 0.1422 0.2631 0.2562 0.2362 0.2819 0.3067 30.40% 11.65%

WeChat

NDCG@20 0.2834 0.3007 0.1706 0.1542 0.2973 0.2803 0.2647 0.3077 0.3301 16.48% 9.78%

	Abstract
	1 Introduction
	2 Related Work
	3 The CT4Rec Model
	3.1 Backbone Model
	3.2 Consistency Training

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Settings
	4.4 Offline Evaluation
	4.5 Online Evaluation

	5 Analysis
	5.1 Ablation Study
	5.2 Hyper-Parameter Analysis
	5.3 Extension to Data Augmentation
	5.4 Training and Cost Analysis

	6 Extension to CTR Prediction
	7 Conclusion and Future Work
	References
	A Appendix
	A.1 Model structure of CT4CTR
	A.2 Training Algorithm
	A.3 More Backbone
	A.4 More Experimental Results

